Multivariate Monge-Kantorovich Transportation Problem

نویسنده

  • Yinfang Shen
چکیده

Received: January 6, 2011 Accepted: January 24, 2011 doi:10.5539/jmr.v3n2p66 The research is supported by Zhejiang Provincial Education Department research projects (Y201016421) Abstract Monge-Kantorovich transportation problem in a bounded region of Euclidean space is transferred into a partial differential equations group. And then the explicit formula of the optimal coupling is achieved. The proofs are based on variational method from probability point of view.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Introduction to the Mass Transportation Theory and its Applications

2 Formulation of the mass transport problems 4 2.1 The original Monge-Kantorovich problem . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Guessing a good dual to the Monge-Kantorovich problem . . . . . . . . . . . . . 6 2.3 Properties of ”Extreme points of C” . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Existence of a minimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

Solutions to Monge-Kantorovich equations as stationary points of a dynamical system

Solutions to Monge-Kantorovich equations, expressing optimality condition in mass transportation problem with cost equal to distance, are stationary points of a critical-slope model for sand surface evolution. Using a dual variational formulation of sand model, we compute both the optimal transport density and Kantorovich potential as t → ∞ limit of evolving sand flux and sand surface, respecti...

متن کامل

5 Kantorovich Metric : Initial History and Little - Known Applications

We remind of the history of the transportation (Kantorovich) metric and the Monge–Kantorovich problem. We also describe several little-known applications: the first one concerns the theory of decreasing sequences of partitions (tower of measures and iterated metric), the second one relates to Ornstein's theory of Bernoulli automorphisms (¯ d-metric), and the third one is the formulation of the ...

متن کامل

M ar 2 00 5 KANTOROVICH METRIC : INITIAL HISTORY AND LITTLE - KNOWN APPLICATIONS

We recall the history of the transportation (Kantorovich) metric and the Monge–Kantorovich problem. We also describe several little-known applications: the first one concerns the theory of decreasing sequences of partitions (tower of measures and iterated metric), the second one relates to Ornstein's theory of Bernoulli automorphisms (¯ d-metric), and the third one is the formulation of the str...

متن کامل

Monge-Kantorovich depth, quantiles, ranks and signs

We propose new concepts of statistical depth, multivariate quantiles, ranks and signs, based on canonical transportation maps between a distribution of interest on IR and a reference distribution on the d-dimensional unit ball. The new depth concept, called Monge-Kantorovich depth, specializes to halfspace depth in the case of elliptical distributions, but, for more general distributions, diffe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011